Acta Cryst. (1982). B38, 2446-2448

Structure of YPd₂Si, an Ordered Fe₃C Type

BY J. M. MOREAU, J. LE ROY AND D. PACCARD

Laboratoire Structure de la Matière, Université de Savoie, Chemin du Bray, Annecy-le-Vieux 74019, France

(Received 10 November 1981; accepted 1 April 1982)

Abstract. Yttrium dipalladium silicide, YPd2Si, space group *Pnma*, a = 7.303(2), b = 6.918(2), c =5.489 (1) Å, Z = 4, μR (Mo Ka, $\lambda = 0.71069$ Å) = 1.6, crystallizes with an ordered version of the Fe₃C-type structure with the Y and Pd atoms occupying the corresponding Fe sites. The structure was determined by direct methods; final R = 0.11 for 219 independent intensities. New compounds found to be isotypic are RPd_2Si with R = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu and RPt₂Si with R = Gd, Tb, Dy, Ho, Er, Tm, Lu, Y.

Introduction. The lattice parameters of R_3M binary alloys of rare earth (R) and transition metals (M) with the Fe₃C-type structure have been reported for M = Ir, Pt, by Le Roy, Moreau, Paccard & Parthé (1979), for M =Co, Rh, Ni, Pd by Parthé & Moreau (1977) and for M = Os, Ru by Palenzona (1979), Palenzona (1980), Sanjinez, Chabot & Parthé (1980). The Fe₃C structure can be derived from a hexagonal close-packed model, using the concept of unit-cell twinning as reported by Andersson & Hyde (1974) and Parthé & Moreau (1977). It could be expected that the Fe_3C model would still appear if the M atom, originally at the centre of R trigonal prisms, is replaced by the much smaller Si atom and some of the R atoms replaced by M atoms such as Pt or Pd. We report the structure of RM_2 Si compounds with R = rare earth and M = Pt and Pd crystallizing with an Fe₃C-type derived structure.

The alloys were made from commercially available elements of high purity (rare earth: 99.9%, Pd: 99.99%, Pt: 99.99%, Si: 99.999%). Samples were prepared by conventional arc-melting techniques. Small crystals of YPd₂Si suitable for X-ray analysis were isolated by mechanical fragmentation from the crushed melt. Weissenberg photographs showed the crystals to have space group Pnma or $Pn2_1a$.

YPd₂Si single-crystal intensities were measured with Zr-filtered Mo $K\alpha$ radiation on a computer-controlled three-circle goniometer in the $\theta/2\theta$ scan mode. Intensities of 328 independent reflections, to a limit of sin θ/λ $= 0.30 \text{ Å}^{-1}$, were measured and corrected for background, Lorentz and polarization factors and 219 reflections with $I > 3\sigma(I)$ were considered as observed.

X-ray photographs from powdered samples were obtained on a Guinier camera with Cu K α radiation (λ = 1.5418 Å) and were calibrated with Si powder. Lattice parameters reported in Table 1 were refined by least squares to fit values for 25 independent reflections observed on Guinier films from powdered samples.

All the computer programs used were from the XRAY system (Stewart, Kruger, Ammon, Dickinson & Hall, 1972). The crystal structure of YPd₂Si was solved by direct methods in the space group *Pnma* with the programs SINGEN and PHASE, which generated

Table 1. Unit-cell dimensions (Å) for RT,Si compounds with the ordered Fe₃C-type structure

E.s.d.'s are given in parentheses. N is the number of atoms in the unit cell.

	а	Ь	с	$(V/N)^{1/3}$
CePd ₂ Si	7.609 (2)	6.877 (1)	5.695(1)	2.651
PrPd ₂ Si	7.561 (3)	6.885 (2)	5.672 (3)	2.643
NdPd ₂ Si	7.513 (2)	6.892 (2)	5.638(1)	2.633
SmPd ₂ Si	7.445 (3)	6.905 (2)	5.584 (2)	2.618
GdPd ₂ Si	7.364 (2)	6.920 (2)	5.545 (1)	2.604
TbPd ₂ Si	7.323 (2)	6.906 (2)	5.513 (1)	2.593
DyPd ₂ Si	7.299 (1)	6.923 (2)	5.501 (1)	2.590
HoPd ₂ Si	7.265 (2)	6.923 (2)	5.484 (2)	2.583
ErPd ₂ Si	7.234 (2)	6.932 (3)	5.469 (2)	2.578
TmPd ₂ Si	7.201 (2)	6.927 (2)	5-452 (1)	2.571
LuPd ₂ Si	7.151 (2)	6-924 (3)	5.438 (2)	2.563
YPd₂Si	7.303 (5)	6-918 (4)	5-489 (4)	2.588
GdPt ₂ Si	7.356 (2)	6.916 (2)	5.515 (2)	2.598
TbPt ₂ Si	7.325 (2)	6.913 (2)	5.486 (2)	2.589
DyPt₂Si	7.288 (2)	6.909 (2)	5-469 (2)	2.582
HoPt ₂ Si	7.269 (2)	6.909 (2)	5.449 (2)	2.577
ErPt ₂ Si	7.234 (2)	6.909 (2)	5.431 (2)	2.570
TmPt ₂ Si	7.212 (3)	6-916 (3)	5-422 (2)	2.566
LuPt ₂ Si	7.170 (2)	6-917 (3)	5-398 (2)	2.558
YPt ₂ Si	7.282 (2)	6.912 (2)	5-461 (1)	2.580

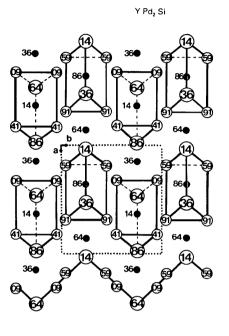
Table 2. Atomic positions for YPd₂Si

E.s.d.'s are given in parentheses. The isotropic temperature factors for YPd₂Si are expressed as exp $[-2\pi^2 \times 10^{-2} U (2 \sin \theta/\lambda)^2]$.

	x	у	Z	U (Ų)
Y	0.0303 (9)	4	0.144 (2)	0.1 (2)
Pd	0.1767 (5)	0.0517 (5)	0.5928 (8)	0.12 (9)
Si	0.362 (3)	$\frac{1}{4}$	0.853 (5)	1.2 (5)

0567-7408/82/092446-03\$01.00 © 1982 International Union of Crystallography

Pd-Si	2.40 (2)	Y-Si	2.90 (3)
—Si	2.49 (2)	-2Pd	2.957 (7)
—Si	2.69 (2)	—Si	3.00 (3)
$-\mathbf{Pd}$	2.748 (5)	—Si	3.03 (3)
-Pd	2.865 (5)	-2Pd	3.004 (6)
$-\mathbf{Y}$	2.957 (7)	2Pd	3.020 (9)
$-\mathbf{Y}$	3.004 (6)	—Si	3.03 (3)
$-\mathbf{Y}$	3.020 (9)	-2Pd	3.201 (7)
-Pd	3.036 (6)		
Si-2Pd	2.40 (2)		
-2Pd	2.49 (2)		
-2Pd	2.69 (2)		
$-\mathbf{Y}$	2.90 (3)		
$-\mathbf{Y}$	3.00 (3)		
$-\mathbf{Y}$	3.03 (3)		


Table 3. Interatomic distances in YPd_2Si up to 3.45 Å E.s.d.'s are in parentheses.

the phases with |E(hkl)| > 1.3. The positions of the Y and Pd atoms were revealed in the corresponding Emap, while the Si positions were obtained by difference Fourier syntheses. Full-matrix least-squares refinement converged after a few cycles to a conventional $R(\equiv \sum |\Delta F| / \sum |F_o|)$ of 0.11.* Scattering factors were taken from *International Tables for X-ray Crystallography* (1974). The final positional parameters are listed in Table 2, interatomic distances in Table 3. Refinement in the $Pn2_1a$ space group did not significantly improve the R factor.

Discussion. The isotypism of the YPd₂Si structure of Fe₃C type was not expected at first from determination of lattice constants owing to differences in b/a and c/a ratios. But comparison of atomic positional parameters of YPd₂Si and Y₃Pt shows that the only difference (9%) is in the value of the z parameter of Pd and Si atoms when compared with Y(2) and Pt (Le Roy *et al.*, 1979). In Fig. 1 the Y₃Pt and YPd₂Si models are represented in projection along the c axis. Chains of atoms which characterize the hexagonal close-packed model are similar to those of Fe₃C. Trigonal prisms surrounding Si atoms in YPd₂Si are similar to those surrounding Pt atoms in Y₃Pt and consequently these two structures can be considered as isotypic.

In Fig. 1 one can see that two Pd-Pd edges of each trigonal prism are parallel to the b axis so that the value of the b parameter should be mainly dependent on the Pd-Pd distance and not dependent on the size of the rare earth. This is demonstrated in Fig. 2 where we have plotted the values of the unit-cell parameters for

 RPd_2Si and RPt_2Si compounds as a function of the radius of the trivalent rare-earth ion (Templeton & Dauben, 1954). The variation of the *a* and *c* parameters is a consequence of the normal lanthanide contraction, but the variation of the *b* parameter is

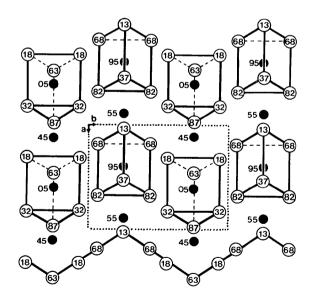


Fig. 1. Projection along the c axis for YPd₂Si and Y₃Pt with Fe₃C-type structure. Numbers within circles correspond to z parameters multiplied by 100. Drawing of trigonal prisms becomes significant if 100 is added to inscribed values of 100z for upper edges. YPd₂Si: big circles are Y atoms, small circles Pd atoms and full circles Si atoms. Y₃Pt: big circles are Y atoms and full circles Pt atoms.

^{*} A list of structure factors of YPd_2Si has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36841 (5 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

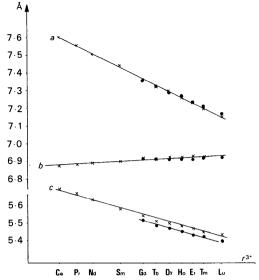


Fig. 2. Unit-cell parameters *a*, *b*, *c*, for orthorhombic $RPd_2Si(\times)$ and $RPt_2Si(\bigcirc)$ compounds *versus* ionic radius r^{3+} for rare-earth elements.

Acta Cryst. (1982). B38, 2448–2449

almost independent and it can be concluded that the bigger the rare earth, the shorter is the Pd-Pd distance along the b axis.

References

- ANDERSSON, S. & HYDE, B. G. (1974). J. Solid State Chem. 9, 92–101.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
- Le Roy, J., Moreau, J. M., Paccard, D. & Parthé, E. (1979). Acta Cryst. B35, 1437-1439.
- PALENZONA, A. (1979). J. Less-Common Met. 66, 27-33.
- PALENZONA, A. (1980). J. Less-Common Met. 72, 21–24.
- PARTHÉ, E. & MOREAU, J. M. (1977) *J. Less-Common Met.* 53, 1–24.
- SANJINEZ, P., CHABOT, B. & PARTHÉ, E. (1980). J. Less-Common Met. 72, 17–20.
- STEWART, J. M., KRUGER, G. J., AMMON, H. L., DICKINSON, C. & HALL, S. R. (1972). The XRAY system – version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- TEMPLETON, D. H. & DAUBEN, C. H. (1954). J. Am. Chem. Soc. 76, 5237–5239.

Orthorhombic Palladium Yttrium Silicide Y₃Pd₂Si₃ and Rhodium Yttrium Silicide Y₃Rh₂Si₃ with Hf₃Ni₂Si₃ Structure Type

By D. PACCARD, J. LE ROY AND J. M. MOREAU

Laboratoire Structure de la Matière, Université de Savoie, Chemin du Bray, Annecy-le-Vieux 74019, France

(Received 30 November 1981; accepted 7 April 1982)

Abstract. Y₃Pd₂Si₃ is orthorhombic, space group *Cmcm* with a = 4.251 (3), b = 10.406 (8), c = 14.123 (7) Å, $\mu R = 1.4$, Z = 4. The structure was determined by direct methods; final R = 0.08 for 182 independent intensities. Y₃Rh₂Si₃ is isotypic; a = 4.174 (2), b = 10.598 (4), c = 13.726 (5) Å. Both structures are isotypic with Hf₃Ni₂Si₃.

Introduction. In the ternary system Y--Pd-Si we investigated first the system YPdSi-YSi to see whether it would be possible to find structures based on trigonal prisms of Y and Pd atoms surrounding Si atoms. A phase corresponding to 2(YPdSi) + YSi, or $Y_3Pd_2Si_3$, was found and the structure was solved.

The alloys were made from commercially available elements of high purity (Y 99.9, Pd 99.99, Rh 99.99, Si 99.999%). Samples were prepared by conventional arc-melting techniques. Small crystals of $Y_3Pd_2Si_3$ and

 $Y_3Rh_2Si_3$ suitable for X-ray analysis were isolated by mechanical fragmentation from the crushed melt. Weissenberg photographs showed the crystals to have space group *Cmcm*.

 $Y_3Pd_2Si_3$ single-crystal intensities were measured with Zr-filtered Mo Ka ($\lambda = 0.71069$ Å) radiation on a computer-controlled three-circle goniometer in the θ -2 θ scan mode. Intensities of 231 independent reflections, to a limit of sin $\theta/\lambda = 0.30$ Å⁻¹, were measured and corrected for background, Lorentz and polarization factors and 182 reflections with $I > 3\sigma(I)$ were considered as observed. X-ray photographs from powdered samples were obtained on a Guinier camera with Cu Ka radiation ($\lambda = 1.5418$ Å) and were calibrated with Si powder. Lattice parameters (see *Abstract*) were refined by least squares to fit values for 23 independent reflections observed on films from powdered samples.

All the computer programs used were from the XRAY system (Stewart, Kruger, Ammon, Dickinson

0567-7408/82/092448-02\$01.00

© 1982 International Union of Crystallography